
PHYSICAL REVIEW E, VOLUME 64, 046129
Renormalization group in quantum mechanics at zero and finite temperature
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We apply the renormalization group formalism, to integrate quantum fluctuations of quantum mechanical
systems at zero and finite temperature. At zero temperature a nonperturbative renormalization group equation
allows to compute the ground state energy whereas at finite temperature a variational renormalization group
equation is proposed to compute the free energy.
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I. INTRODUCTION

Methods of reducing quantum statistical calculations
classical ones are very important from theoretical and p
tical point of view. In this context the path integral approa
has been proved to be very useful, as the quantum part
function can be approximated by a classical one after in
gration of the quantum fluctuations. Several methods ba
on a variational principle have been proposed to comp
these quantum fluctuations@1,2# leading to an effective clas
sical potential. In particular the Feynman-Kleinert@3,4#
variational approach has shown to give accurate results
to be easy to handle. Later this method has been improve
the variational perturbation theory@4,5,6#, but computations
get rapidly cumbersome with the perturbation expansion

In previous papers@7,8,9# we proposed an alternativ
method based on the renormalization group~RG! to integrate
the quantum fluctuations and to obtain the effective class
potential. This procedure is nonperturbative and nonva
tional. It has proven to be very efficient and easy to han
for the computation of the ground state and first excited
ergy level of a one quantum particle system at zero temp
ture. Moreover it allows to find with a greater accuracy th
the variational method the particle distribution@9#. Unfortu-
nately this method seemed not to be really promising
finite temperature calculus.

The aim of the present paper is twofold. In the first p
we apply the zero temperature RG formalism to several
ferent physical models. Even if the RG method cannot co
pete with the efficiency of Kleinert’s systematic variation
perturbation that converge to the exact result@4,5,6#, it has
the merit to be easily extrapolated to nonpolynomial pot
tials and to systems of particles in interaction. We then co
pute the ground state and the first excited energy level f
one quantum particle in the sextic potential and discuss
convexity of the effective classical potential of a particle in
periodic cosine potential. In addition we derive the RG eq
tion for a two quantum particles in interaction system a
apply it to a pair of coupled oscillators with quartic co
plings. Our results are very accurate for small couplings
accurate to a few percent for large couplings.

In a second part we inspect more carefully the finite te
perature case. It is well known that the zero temperature
1063-651X/2001/64~4!/046129~9!/$20.00 64 0461
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equation takes automatically into account, through the r
ning coupling constants, all the terms in the loop expansio
In Ref. @7# it has been found that this is no more the case
finite temperature as the RG equation is no more a clo
expression but is defined by an infinite series in the temp
ture. We have studied the flow of the coupling constants
truncating this RG series. But the results being not convi
ing we turn to an improvement of the variational Feynma
Kleinert method by the renormalization group, the goal be
to automatically resum terms of the variational perturbat
theory, as already suggested in Ref.@7#. We find only an
improvement of the Kleinert variational perturbation expa
sion for small values of the coupling and large temperatu
but our results cannot compete for strong coupling. We d
cuss the reasons for these mitigated results.

Section II is devoted to the zero temperature situation
Sec. II A, to establish clearly the formalism, we apply the R
method to the sextic oscillator. The case of the one quan
particle in a periodic cosine potential is developed in S
II B. In Sec. II C, as a generalization of the previous form
ism, we establish the RG equation for two particles with
arbitrary interaction and obtain quantitative results for a p
of coupled oscillators with quartic couplings.

In Sec. III we investigate the finite temperature situatio
Section III A is devoted to the study of the truncation of t
RG finite temperature series. The variational RG equatio
derived in Sec. III B and applied to the computation of t
free energy for the anharmonic oscillator.

II. RENORMALIZATION GROUP
AT ZERO TEMPERATURE

In this section we recall the main steps of the proced
leading to the RG equation in quantum mechanics. We w
in the euclidean formalism at a finite temperature and d
crete time and quickly retrieve the RG equation as was d
in Ref. @8#. In this section we limit ourself to the zero tem
perature limit, so we will always neglect contributions
order 1/b2. Keeping a finite temperature in the intermedia
steps allows to work with a finite number of Fourier mode
so that we can integrate each mode after the other in the
integral.
©2001 The American Physical Society29-1
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Consider the euclidean action of a quantum particle a
finite temperature

S~x!5E
0

\bF 1
2 M S d

dt
x~ t ! D 2

1V„x~ t !…G , ~1!

with M the mass andV the potential.
The effective classical potential is defined as a c

strained path integral over periodic paths with period\b @4#

exp@2bV0~x0!#5E Dxd~ x̄2x0!expF2
1

\
S~x!G , ~2!

wherex̄51/\b*0
\b dt x(t) is the average position of the pa

ticle in the time intervaltP@0,b#.
We consider the Feynman path integral with a discreti

time tn5nT/N115ne, with N an arbitrary large number
and n50, . . . ,N11. The Fourier decomposition of a per
odic path x(tn) contains only a finite number of Fourie
modes

x~ tn!5x01
1

AN11
(
8

exp~ ivmtn!xm1H.c., ~3!

where S8 is from 1 to N/2 if N is even and from 1 toN
21/2 if N is odd. Thexm are the Fourier modes and

vm
2 5

22cos
2pm

N11

e2 .

The discrete action is@4#

SN/2~x!5e(
0

N/2

Nvm
2 uxmu21e (

n5 l

N11

VN/2„x~ tn!… ~4!

and the partition function,

Z5E dx0

A2p\e/M
E )

1

N/2
dxm dx̄m

2pe\

M

expS 2
1

\
SN/2D . ~5!

Now, using the fact thatP1
N/2e2vm

2 5AN11 ~see@4#! and
\b5(N11)e, we can drop the first integral to get the e
fective classical potential@4#:

exp„2bV0~x0!…5E )
1

N/2
dxm dx̄m

2pe\

e2vm
2 M

expS 2
1

\
SN/2D . ~6!

The RG method allows to computeV0 by integrating recur-
sively, each mode after the other in the path integral. Le

x~m!~ tn!5x01
1

AN11
(
p51

m

exp~ ivptn!xp1H.c., ~7!
04612
a

-

d

the truncated path with Fourier components up tom ~the so
called background path!. We define the running action a
step m21, Sm21 , recursively by integrating on the two
modesxm and x̄m that is

expF2
1

\
Sm21~x~m21!!G5E dxm dx̄m

2pe\

e2vm
2 M

expF2
1

\
Sm~x~m!!G ,

~8!

whereSN/2 is the initial action.
Note an important point observed in Ref.@8#. Only a kind

of quasilocal potential is preserved by the renormalizat
group flow~8!. As shown in Ref.@8# we have to consider for
the potentialVm a function of them11 independent vari-
ables Vm(x0 ,...,xpeivpt1x2peivpt,...,eivmtxm1eivmtx2m)
denoted for convenience byVm„x

(m)(t)….
In fact, due to the nonlinearity of thevm , this kind of

potential is not preserved by the RG flow. But recall that
want to consider the limitb→`. In such limit vm
52pm/\b and the class of function considered is preserv
by the flow.

To derive the flow equation for the potential, it is easier
work in functional space. We write the action at scalem

Sm~x~m!!5e (
p50

m

Mvp
2uxpu21bUm~x~m!!, ~9!

where we have introduced the notation

Um~x~m!!5
e

b (
n50

N11

Vm~x0 ,eiv1tx11e2 iv1tx21, . . . ,eivmtxm

1e2 ivmtx2m!. ~10!

Expanding the potential aroundx0 we get the following ex-
pansion:

Um~x~m!!5gm
0 ~x0!1 (

n52m
nÞ0

m gm
n,2n~x0!

2!~N11!
xnx2n

1 (
n1 ,...,n452m

niÞ0

m gm
n1 ...n4~x0!

4!~N11!2

3xn1
xn2

xn3
xn4

dn11¯1n4,01¯ . ~11!

Note that in Eq.~11! there is still conservation of the mo
mentum due to our choice of the potential~10!.

To get only the contributions of order 1/b it is enough to
expand the actionSm(x(m)) aroundx(m21) to the second or-
der @8#, so that the result is obtained after a Gaussian in
gration. The RG equation is

Sm21~x~m21!!5Sm~x~m21!!1 1
2 ln@det~A!#2JtA21J,

~12!

with the matrixA given by
9-2
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A5S 11
Um

~m,2m!1Re~Um
~m,m!!

Mvm
2 2

Im~Um
~m,m!!

Mvm
2

2
Im~Um

~m,m!!

Mvm
2 11

Um
~m,2m!2Re~Um

~m,m!!

Mvm
2
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J5S Re~Um
~m!!

2Im~Um
~m!!

D
with the notation,

Um
~n1 •••np!

[~N11!p/2
]pUm

]xn1
¯]xnp

U
~xn1

,...,xnp
!50

. ~13!

From Eq.~12! we deduce the flow equation for the potent
part of the action:

Um215Um1
1

2b
lnF S 11

Um
~m,2m!

Mvm
2 D 2

2UUm
~m,m!

Mvm
2 U2G

2
~Mvm

2 1Um
~m,2m!!uUm

~m!u22Re~Um
~2m,2m!Um

~m!2!

~Mvm
2 1Um

~m,2m!!22uUm
~m,m!u2 .

~14!

For the constant background pathx(m)5x0 Eq. ~14! reduces
to the so called local potential approximation~LPA! of the
RG flow,

Um21~x0!5Um~x0!1
1

b
lnS 11

Um
~m,2m!~x0!

Mvm
2 D . ~15!

As in Ref. @7#, we will use this LPA to compute the groun
state energy and first excited energy level of various qu
tum mechanical system. In this approximation,Um(x0)
5Vm(x0) andUm

(m,2m)(x0)5Vm9 (x0).
To solve the flow of Eq.~15! we have to expand the

potentialVm(x) in series and compute the flow of the co
pling constants. As a first application we consider the se
oscillator.

A. Sextic oscillator

We want to compute the ground state energy of the
harmonic oscillator whose potential is

VN/2~x!5
MV2

2
x21

l

6!
x6. ~16!

Note that in quantum mechanics each coupling in a poly
mial interaction is a relevant coupling constant. For an e
potential the minimum of the effective classical potential
always located atx050 in the absence of phase transition
04612
l

n-

ic
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n

one-dimensional systems. For this reason we expandVm
aroundx050 and define thenth coupling constant at the
scalem as

gm
~n!5

dnVm~x0!

dx0
n U

x050

. ~17!

The equation for the first coupling constant is

gm21
0 5gm

0 1
1

b
lnS 11

gm
~2!

Mvm
2 D . ~18!

The value of the ground state energy is given byE05g0
0

5V0(0), which is the minimum of the effective classica
potential. The flow of the quadratic coupling constants is

gm21
~2! 5gm

~2!1
1

b

gm
~4!

Mvm
2 1gm

~2! . ~19!

The particular valueg0
(2) corresponds to the mass gap or t

inverse correlation length in statistical mechanics langua
Then it is well known that the first exited energy level can
deduced from the relationE12E05Ag0

(2).
The general formula for the other coupling constants

given in Eq.@7# and recalled below:

gm21
~k! 5gm

~k!1
1

b F(
p

~21!p21Pm~0!p

3S (
a11¯ap5k,a i m̄0

k!Ap

p

gm
~a112!

a1!
3¯

gm
~ap12!

ap! D G ,

where Ap is the combinatorial factor ofgm
(a112)/a1!

3¯ gm
(ap12)/ap! in the series expansion of@Vm9 (x0)#p in

power ofx0 andPm(0)51/(Mvm
2 1gm

(2)).
Tables I and II display the values of the ground sta

energy and the first excited energy level for various values
the coupling constantl.

TABLE I. Ground state energy and first excited energy level
the sextic oscillator forMV251.

l E0,exact E0,RG E1,exact E1,RG

7.2 0.5154 0.5152 1.5954 1.5956
72 0.5869 0.5847 1.9504 1.9428
720 0.8048 0.7958 2.8749 2.8439
7200 1.2819 1.2610 4.7566 4.6848
9-3
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The numerical solution of the RG flow shows a go
convergence forN5108 andb5105. The truncation of the
potential at the order six gives the best approximation. A
ing more coupling constant does not improve the result
the contrary~see also Ref.@7#!.

B. Periodic cosine potential

In this section we extend the application of the RG fo
malism to a quantum system in a nonpolynomial potent
We choose a cosine potential@11# whose action is defined a

S~x!5E
0

\b

dtH 1

2
M F d

dt
x~ t !G2

1l~cosax~ t !21!J .

This action has the discrete symmetryS(x12p/a)5S(x).
We notel52p/a the period length. It is well known tha
the energy spectrum of a quantum particle is made up
periodic bands. Following Ref.@11# we noteEn(w) the en-
ergy of the nth band, with the propertyEn(w12p)
5En(w). In a finite volumew5wp52pp/b.

Let H be the Hamiltonian andZ be the partition function
of the system. The stationary states are defined by

HuCn,p&5En,puCn,p&,

which leads to the following expression for the partitio
function:

Z5E
2`

1`

dx^xue2bHux&5 lim
L→`

E
2L

1L

dx(
n,p

ucn,p~x!u2e2bEn,p

with L5Nl. Using the following normalization,

E
2L

L

ucn,p~x!u2 dx51,

as well as,

(
n,p

e2bEn,p 5
N→`

N(
n
E

0

2p dw

2p
e2bEn~w!

we obtain the expression

Z5N(
n
E

0

2p dw

2p
e2bEn~w!.

And in the zero temperature limit,

TABLE II. Ground state energy and first excited energy level
the sextic oscillator forMV2521.

l E0,exact E0,RG E1,exact E1,RG

72 0.5434 0.1095 1.3006 0.880
720 0.6808 0.5302 2.4070 2.2627
7200 1.1791 1.1133 4.4602 4.3991
04612
-
n

-
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of

Z 5
b→`

NE
0

2p dw

2p
e2bE0~w!.Ne2bE0~ w̄ !, ~20!

wherew̄ is the location of the minimum of the first band.
The partition can be written in terms of the effective cla

sical potential as

Z5E
2`

1`

dx0 e2bVeff ~x0!

From Eq.~2! and the periodicity of the action it is clear tha
the effective classical potential must be also a periodic fu
tion and in the zero temperature limit we get

Z 5
b→`

N exp@2bVeff~ x̄0!#. ~21!

Equating Eqs.~20! and ~21! leads to

E0~ w̄ !5Veff~ x̄0!.

To compute the effective classical potential at its minimu
we apply the RG equation,

Vm21~x0!5Vm~x0!1
1

b
lnS 11

Vm9 ~x0!

Mvm
2 D .

It is easy to check that the following form forV is preserved
by the RG flow:

Vm~x!5 (
n50

`

bm
n ~cosax21!n.

Then for the second derivative we have

Vm9 ~x!52a2(
n50

`

@~2n213n11!bm
n111n2bm

n #

3~cosax21!n

5a2(
n50

`

cm
n ~cosax21!n.

Starting with the initial potential

VN~x!5A~cosax21!

the RG equation is

~22!

Expanding the logarithmic term yields

f

9-4
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I 5
1

b (
n>1

(
p>1

~21!p11

p
a2p

3 (
k11¯kp5n

cm
k1
¯cm

kp

~vm
2 1a2cm

0 !p ~cosax21!n.

Identifying the different orders in the two members of E
~22! we get the flow of the couplingsbm

n . The first terms are

bm21
0 5bm

0 1
1

b
lnS 11

a2cm
0

vm
2 D with cm

0 52bm
1 ,

bm21
1 5bm

1 1
1

b S a2cm
1

vm
2 1a2cm

0 D with cm
1 52bm

1 26bm
2 ,

bm21
2 5bm

2 1
1

b S a2cm
2

vm
2 1a2cm

0 2
a4~cm

1 !2

2~vm
2 1a2cm

0 !2D
with cm

2 524bm
2 215bm

3 .

The ground state energy is given by

E0~ w̄50!5b0
0.

Truncating the expansion at the second order we can c
pute numerically the flow of the couplings to get an appro
mation of the ground state energy. Some results are give
Tables III and IV for various values ofl anda.

These results show that the effective classical potentia
periodic but not flat as asserted in Ref.@12#. Although it is
well known that the effective potential is a convex quant
that must be flat if periodic, take care that this property
true for the effective potential defined as a Legendre tra
form of the generating functionalW@ j # of connected Green’s
functions. Actually the classical effective potential@3,4# has
not to be convex.

To confirm our statement consider the density of parti
@4,10# computed in Ref.@9#,

r~xa!5Z21E dx^xue2bHux&d~x2xa! ~23!

TABLE III. Coupling constants of the periodic cosine potent
for a50.1.

l b0
0 b0

1 b0
2 b0

3 b0
4

21 0.0992 20.975 20.0065 0.0035 20.0021
210 0.3154 29.921 20.0021 0.012 20.0064

TABLE IV. Coupling constants of the periodic cosine potent
for a51.

l b0
0 b0

1 b0
2 b0

3 b0
4

21 3.098 29.187 20.24 0.15 20.09
210 0.930 20.653 20.42 2.08 28.21
04612
.
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whose very good approximation is

r~xa!'Z21E dx0

A2pb/M

exp@2~xa2x0!2/2a2~x0!#

A2pa2~x0!

3e2bV0~x0! ~24!

with

a2~x0!5
2

b (
m51

N/2
1

Mvm
2 1Vm

~2!~x0!
. ~25!

It is clear that the density of particle has to be period
r(xa)5r(xa1l) and nonconstant, so that by inspection
Eq. ~24! V0(x0) has to be nonconstant and periodic.

C. Pair of coupled oscillator with quartic coupling

In this section we extend the one quantum particle R
formalism to a system of two particles in interaction a
compare with some exact results@13#.

Consider the following two particles model with actio
written in continuous time:

S5E
0

b

dtH M1ẋ1
2

2
1

M2ẋ2
2

2
1V~x1 ,x2!J .

We defineVm(x0
1,x0

2) the running potential at scalem for a
two particle system. LetVm

i , j the second derivative ofVm

with respect tox0
i andx0

j . Similar to the one particle case th
RG equation is straightforwardly derived,

Vm21~x0
1,x0

2!5Vm~x0
1,x0

2!1
1

b
lnF S 11

Vm
11~x0

1,x0
2!

M1vm
2 D

3S 11
Vm

22~x0
1,x0

2!

M2vm
2 D 2S Vm

12~x0
1,x0

2!

AM1M2vm
2 D 2G .

Choosing a quartic potential

V~x1 ,x2!5l~a11x1
412a12x1

2x2
21a22x2

4!,

TABLE V. Ground state energy of the coupled oscillator in t
symmetric casea115a2251. In every entry, the upper number
the exact energies obtained from@13#, whereas the lower number i
our RG result.

l\a12 1 0.2 20.2

0.05 1.0843 1.0692 1.0613
1.0837 1.0648 1.0647

0.1 1.1502 1.1250 1.1114
1.1485 1.1182 1.1078

1 1.7242 1.6332 1.5802
1.7044 1.6127 1.5615

10 3.301 3.0753 2.9396
3.230 3.0160 2.8840
9-5
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it is easy to derive the flows of the different coupling co
stants around the pointx0

150, andx0
250 in order to compute

the ground state energy. We omit to write the long expr
sions of the RG flows for the coupling constants and o
report in Tables V, VI, and VII the results for the groun
state energy and first excited energy level as well as the e
results for comparison@13#.

The computations have been performed by truncating
series expansion of the potential at the sixth order. Again
results are very accurate for small couplings and accurat
a few percent for large couplings.

III. RENORMALIZATION GROUP
AT FINITE TEMPERATURE

A. Perturbative renormalization group series

At finite temperature the derivation of the RG equati
needs some precautions. First of all as shown in Ref.@8#, and
recalled in the first section this equation can only be deri
consistently for a constant background pathx0 . Second as
shown in Ref.@7#, we can no more neglect corrections
order higher than 1/b. In Ref.@7#, we showed that the correc
formula at finite temperature for the flow of the running p
tential is given by

Vm21~x0!

5Vm~x0!1
1

b
lnS 11

Vm
~2!~x0!

vm
2 M D

1
1

b
lnH 11 (

n>2

n!

b21 (
k1p11¯1knpn5n

~2 !k11¯1kn

3
@Vm

~2p1!
~x0!#k1

k1! ~p1! !2k1
¯

@Vm
~2pn!

~x0!#kn

kn! ~pn! !2kn
Pm

n J , ~26!

wherePm51/@vm
2 M1Vm

(2)(x0)#.
This equation has not the closed form of the zero temp

ture RG equation~15! as it contains an infinite number o
terms.

Let us quickly review the border cases.

TABLE VI. First excited energy level of the coupled oscillato
in the symmetric casea115a2251.

l\a12 1 0.2 20.2

0.05 2.2388 2.1972 2.1746
2.2372 2.1852 2.1850

0.1 2.414 2.3471 2.3094
2.408 2.3361 2.3152

1 3.8304 3.6073 3.4704
3.7511 3.4871 3.3421

10 7.527 6.9887 6.6476
7.233 6.771 6.4612
04612
-
y
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e
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1. Infinite temperature

For a large temperature, the quantum fluctuations
small and the system is close to the classical one. The flow
the potential stays near the classical one~the potential energy
of the action! and will be obtained after a relatively sma
number of iterations of the RG equation. In particular in t
limit b→0, Vm

(2)(x0)/vm
2 M and P are of orderb2 and we

obtain

Vm21~x0!5Vm~x0!,

a running potential constant along the flow. As a con
quence the quantum partition function reduces to the cla
cal one.

2. Zero temperature

In this opposite case due to quantum fluctuations the
fective classical potential is expected to be different from
classical one and will be obtained after a huge number
iterations of the RG equation~typically 108 for b5105!. The
higher loop contributions are negligible, then we can extr
informations for large coupling constants. In particular,
the limit b→` the propagatorPm is of order 1/Vm

(2)(x0).
Then, keeping only the one loop contribution in Eq.~26! we
recover the closed form~15!:

Vm21~x0!5Vm~x0!1
1

b
lnS 11

Vm
~2!~x0!

vm
2 M D .

3. Finite temperature

For finite b the partition function

Z5E dx0

A2p\e/M
exp@2bV0~x0!#

is no more dominated by the minimum of the effective cla
sical potential.

Thus, at finite temperature, the computation of the pa
tion function requires the whole knowledge of the effecti
classical potential, and not only its value at the minimu
We will not compute the ground state, but rather the fr
energy lnZ/b of the system.

TABLE VII. Ground state energy of the coupled oscillator
the dissymmetric casea1150.4, a2251.

l\a12 1 0.2 20.2

0.05 1.0669 1.0509 1.0424
1.0667 1.0512 1.0428

0.1 1.1206 1.0933 1.0782
1.1250 1.0871 1.0721

1 1.6123 1.5043 1.4379
1.5961 1.4854 1.4274

10 3.0175 2.8165 2.5580
2.8826 2.6552 2.3451
9-6
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To do so, we first write a perturbative expansion of t
RG equation~26! truncated to the fourth order in 1/b:

Vm21~x0!5Vm~x0!1
1

b
lnS 11

Vm
~2!~x0!

vm
2 M D 2

1

2b2

Vm
4 ~x0!

Pm
2

2
1

b3 S 1

6

Vm
6 ~x0!

Pm
3 1

1

8

@Vm
4 ~x0!#2

Pm
4 D

2
1

b4 S 1

24

@Vm
4 ~x0!#3

Pm
6 1

1

12

Vm
4 ~x0!Vm

6 ~x0!

Pm
6 D .

By deriving this equation we also get an infinite set of R
equations for the successive derivativesVm

(k)(x0) of the run-
ning potential. For the numerical computations, we will n
glect all the derivatives of order more than six.

Then, we compute numerically, the flow of the success
derivatives up to the sixth order of the potential in differe
point x0 . It allows to reconstruct an approximation of th
whole effective classical potential up to the fourth order
1/b, and then to compute the free energy of the system.

The results for a quartic initial potential are reported
Table VIII, for various values of the coupling constantl.

The free energy computed with the RG method is deno
FRG. For comparison, we report alsoFexactandFvar the free
energy computed with the Feynman-Kleinert variation
method@3,4#.

The results obtained with the RG method are not far fr
the exact free energy, but are clearly less good than the v
tional method. The trouble comes from the truncation of
running potential at the sixth order, as well as the truncat
at the fourth order in 1/b. An attempt to improve these re
sults by increasing the order of the expansion, would be
cumbersome. It is quite surprising that the RG method
very powerful in the most complex case~zero temperature!
where quantum fluctuations are very important whereas
results are less accurate at finite temperature where qua
fluctuations are less relevant. In this last case we should
pect the truncation of the expansion of the potential to b
good approximation. The trouble here is that, at finite te
perature, we have to rebuild the whole effective class
potential to compute the free energy. In this case, our tr
cation is too rough to give an accurate approximation of
true effective classical potential. In the zero temperat
case, we just need to fit the effective classical potential a

TABLE VIII. Free energy of the anharmonic oscillator fo
MV251. FRG is the perturbative RG computation andFvar is the
Feynman-Kleinert variational computation@3,4#.

l b FRG Fvar Fexact

2.4 1 0.228 69 0.226 08 0.226 07
2.4 5 0.546 33 0.559 15 0.558 67
12 1 0.486 30 0.492 68 0.492 58
12 10 0.671 75 0.700 93 0.696 29
12 000 0.1 2.679 04 2.699 7 2.68 34
12 000 10 5.252 88 5.452 5 5.319 9
04612
-

e
t

d

l

ia-
e
n

o
is

e
um
x-
a
-
l
-

e
e
ts

minimum, which for quadratic@7# or sextic interaction ap-
pears to be well approximated by a sextic polynomial inx0 .

As it is difficult to avoid the truncation of the set of RG
equations for the derivatives of the running potential, we c
at least, avoid the truncation in power of 1/b. In the follow-
ing, we propose another method that tries to improve
variational Feynman-Kleinert method.

B. Variational renormalization group equation

In the Feynman-Kleinert~FK! method, one tries to find a
quadratic potential at each pointx0 fitting at best the effec-
tive classical potential. One can improve this procedure
looking for a quadratic potentialVm

2 (x0)x2 fitting Vm(x0) at
each step of the renormalization group flow. Then by i
proving in such a manner the FK method, one will take in
account some contributions of the Kleinert’s variational p
turbation expansion@4#.

The derivation of the variational RG equation was done
Ref. @7#:

Vm21~x0!5
1

b
lnS 11

Vm
2 ~x0!

vm
2 D 2

1

b

Vm
2 ~x0!

Vm
2 ~x0!1vm

2

1Va
m
2 ~x0!, ~27!

whereVm
2 (x0) is the variational parameter satisfying the i

tegral equation:

Vm
2 ~x0!5E dx

A2pam
2

x

2
exp~2x2/2!Vm8 „x01Aam

2 ~x0!x…

~28!

with

am
2 ~x0!5

2

b

1

Vm
2 ~x0!1vm

2

and

Va
m
2 ~x0!5E dx

A2pam
2

exp@2~x2x0!2/2am
2 ~x0!#Vm~x!.

~29!

To perform an analytic computation, we expandVm(x) in the
right hand side of Eqs.~28! and ~29! in a series of (x
2x0)kVm

(k)(x0). Keeping only the derivatives up to the ord
Vm

4 allows a complete analytic computation. This means t
the running potential is fitted at each pointx0 by a polyno-
mial of order four.

Let X5am
2 , the integrations in Eqs.~28! and ~29! yields

Va
m
2 ~x0!5Vm~x0!1 1

2 Vm
~2!~x0!X2 1

8 Vm
~4!~x0!X2,

Vm
2 ~x0!5Vm

~2!~x0!1 1
2 Vm

~4!~x0!X.

Equating this last result toVm
2 52/bam

2 2vm
2 52/bX2vm

2

leads to a second order equation inX whose solution is
9-7
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TABLE IX. Free energy of the anharmonic oscillator.FRG is the variational RG computation andFper,var

is the perturbative variational result of Kleinert@4,5#.

l b FRG Fvar Fper,var Fexact

0.012 2 0.427 938 0.427 937 0.427 937 0.427 741
2.4 1 0.226 075 0.226 084 0.226 075 0.226 074
2.4 5 0.559 46 0.559 155 0.558 678 0.558 675
12 1 0.492 612 0.492 685 0.492 578 0.492 579
12 5 0.701 25 0.699 431 0.696 180 0.696 118
12 000 0.1 4.500 2.699 7 2.698 34 2.698 34
12 000 10 9.875 5.452 5 5.622 5 5.319 9
480 000 0.1 46.61 18.15 18.047 18.045
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X5
2@Vm9 ~x0!1vm

2 #1A~Vm9 ~x0!1vm
2 !214Vm

~4!/b

Vm
~4! .

~30!

In terms ofX, Eq. ~27! becomes

Vm21~x0!5Vm~x0!1
1

b
lnS bX

2vm
2 D 2 1

8 Vm
4 ~x0!X2 ~31!

and the RG flows for the derivatives of the running poten
are

Vm218 ~x0!5Vm8 ~x0!2
1

b

X8

X
2 1

4 Vm
4 ~x0!X8X,

Vm21
~2! ~x0!5Vm

~2!~x0!2
1

b S X9

X
2

X82

X2 D
2 1

4 Vm
4 ~x0!~X9X1X82!,

Vm21
~3! ~x0!5Vm

~3!~x0!2
1

b S X~3!

X
2

3X9X8

X2 1
2X83

X3 D
2 1

4 Vm
4 ~x0!~X~3!X13X9X8!,

Vm21
~4! ~x0!5Vm

~4!~x0!2
1

b S X~4!

X
2

4X~3!X813X92

X2

1
12X9X82

X3 2
6X84

X4 D
2 1

4 Vm
4 ~x0!~X~4!X14X~3!X813X92!,

where the derivatives ofX are obtained from Eq.~30!. Let
P5Vm9 (x0)1vm

2 , andY5P214Vm
(4)/b,

X85
2Vm

~3!1PVm
~3!

Vm
~4! ,

X95211PY21/21
4

b
~Vm

~3!!2Y23/2,

X~3!5
12

b
Vm

~3!Vm
~4!Y23/22

12

b
~Vm

~3!!3PY25/2,
04612
l

X~4!5
12

b
~Vm

~4!!2Y23/22
72

b
~Vm

~3!!2Vm
~4!P2Y25/2

2
12

b
~Vm

~3!!4Y25/21
60

b
~Vm

~3!!4P2Y27/2.

For the numerical application of these flow equations
consider an initial quartic potential with couplingl. In Table
IX, we report the valuesFRG of the free energy estimate
with the variational renormalization group equation for va
ous values ofl. For comparison we also report the exa
valueFexact, as well as the Feynman-Kleinert variational r
sults @3,4# and the perturbative variational results@4,5#.

As seen in Table IX, our method works very well, wit
better results than the perturbative RG results, for sm
enough coupling constants. Of course our results can
compete with a systematic application of the perturbat
variational method. For very large coupling constants,
results are very bad, even for large temperature. This is
to the fact that in this case, the higher derivatives coupl
constants are not negligible, invalidating our truncation.
would be interesting to extend our method by keeping m
derivatives of the running potential. But it needs much mo
work, since it would imply an equation forX of higher de-
gree than 2~an equation of degreeN, if we truncate at the
order 2N!.

Nevertheless, for small coupling constants and sm
b (b,5) our results are better than the FK variation
method and very close to the exact free energy. Actually
high temperature, the quantum fluctuations are small and
true effective classical potential is close to the initial ba
potential. This means that quantum fluctuations do not in
ence very much the flow of the coupling constants and
truncations at the quartic order is enough for accurate c
putations. For smaller temperature, the quantum fluctuat
influence more the running coupling constants, which in tu
grow too much to justify our truncation.

IV. CONCLUSION

In this paper, we have studied in detail the renormali
tion group formalism for quantum systems at zero and fin
temperature.
9-8
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At zero temperature, the flow equation for the poten
has a closed form that allows to obtain nonperturbativel
very good approximation of the ground state energy of
system, as well as the first excited energy level. It is p
formed by computing the flow of the coupling constants
the truncated potential, around its minimum. We have
plied this method to polynomial interaction, as well as
periodic potential and a two particle system. In the case
the periodic system, we obtain a periodic and noncon
effective classical potential. Actually, our potential, called
@4# the classical effective potential, is different from the Le
endre transform of the generating functional of connec
Green’s functions.

At finite temperature, the renormalization group equati
is given by a perturbative expansion in 1/b. Moreover, we
need, in this case, to compute the whole classical effec
cs
,

A

04612
l
a
e
r-
f
-

f
x

-
d

,

e

potential in order to deduce the free energy of the syst
since the partition function is no more approximated by
exponential of the minimum of the classical effective pote
tial. By truncating both the RG equation and the runni
potential, we obtain numerical results inferior to the on
computed with the Feynman-Kleinert variational method.

As we cannot avoid the truncation of the running pote
tial, we have at least avoided the truncation in 1/b by setting
a variational renormalization group equation leading to
analytic equation for the variational parameters.

Our results are very good for small couplings and smab
since in these cases, the flow of the coupling constants d
not grow too much due to the small quantum fluctuatio
For largerb the growth of the coupling constant needs
take into account much more couplings. This point is un
consideration.
-
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